martes, 24 de noviembre de 2009

eliminacion por adicion o sustraccion

Eliminación por adición o sustracción:

Para resolver un sistema de dos ecuaciones con dos incógnitas empleando el método de eliminación por suma o resta:

a) Multiplíquense los dos miembros de una de las ecuaciones, o de ambas, por número tales que resulten iguales los coeficientes de una misma incógnita.
b) Súmense las dos ecuaciones si dichos coeficientes son de signos contrarios, y réstense si son de mismo signo.
c) Resuélvase la ecuación que así resulta, con lo cual se obtiene el valor de la incógnita que contiene.
d) Sustitúyase este valor en una de las ecuaciones dadas y resuélvase; se obtiene así la otra incógnita.

Ejemplo: Sea resolver el sistema:
x - 3y = 9 . . . . . . . . . . . . . . . . . . (1),
2x + y = -10 . . . . . . . . . . . . . . . . .(2).

Solución:
Multiplíquese ambos miembros de (1) por 2, se obtiene:
2x - 6y = 18 . . . . . . . . . . . . . . . . (3).

Réstese miembro a miembro la (2) de la (3), desaparecen los términos en "x":
-7y = 28 ,
se obtiene: y = -4.

Sustitúyase "y" por su valor en cualquiera de las ecuaciones dadas, y despéjese a "x":
x - 3y = 9
x - 3(-4) = 9
x + 12 = 9
x = -3;

por tanto: x = -3; y = -4.


Eliminación por igualación:

a) Despéjese, en cada ecuación, la incógnita que se requiere eliminar.
b) Iguálense las expresiones que representan el valor de la incógnita eliminada.
c) Resuélvase la ecuación que resulta, con lo cual se obtiene el valor de la incógnita no eliminada.
d) Sustitúyase el valor hallado en una de las expresiones que representa el valor de la otra incógnita, y resuélvase.

Ejemplo: Sea resolver el sistema:
x + 2y = 22 . . . . . . . . . . . . . . . . . . . (1),
4x - y = 7 . . . . . . . . . . . . . . . . . . . . (2).

Se va a eliminar "x". Despéjese el valor de "x" en (1) y (2); se tiene:
x = 22 - 2y . . . . . . . . . . . . . . . . . . . (3) ,
x = (7 + y) / 4 . . . . . . . . . . . . . . . . . (4).

Iguálense las dos expresiones que representan el valor de "x":
22 - 2y = (7 + y) / 4

Dése forma entera, o sea, quítense los denominadores, luego resuélvase:
88 - 8y = 7 + y
-9y = -81
y = 9

Sustitúyase en (3) o en (4) el valor hallado para "y":
x = 22 - 2y . . . . . . . . . . . . . . . . . . . . (3),
x = 22 - 2(9)
x = 4

por tanto: x = 4; y = 9.

lunes, 26 de octubre de 2009

factorizacion


En álgebra, la factorización es expresar un objeto o número (por ejemplo, un número compuesto, una matriz o un polinomio) como producto de otros objetos más pequeños (factores), (en el caso de números debemos utilizar los números primos) que, al multiplicarlos todos, resulta el objeto original. Por ejemplo, el número 15 se factoriza en números primos 3 × 5; y a²-b² se factoriza como binomio conjugados (a - b)(a + b).
La factorización de enteros en números primos se describe en el teorema fundamental de la aritmética y la factorización de polinomios (en ciertos contextos) en el teorema fundamental del álgebra.


Factorizar un polinomio
Antes que nada, hay que decir que no todo polinomio se puede factorizar utilizando números reales, si se consideran los números complejos sí se puede. Existen métodos de factorización, para algunos casos especiales.
Binomios
Diferencia de cuadrados
Suma o diferencia de cubos
Suma o diferencia de potencias impares iguales
Trinomios
Trinomio cuadrado perfecto
Trinomio de la forma x²+bx+c
Trinomio de la forma ax²+bx+c
Polinomios
Factor común
Caso I - Factor comúnSacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes.
Factor común monomio Factor común por agrupacion de términos


Factor común polinomio
Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.
un ejemplo:

Se aprecia claramente que se esta repitiendo el polinomio (x-y), entonces ese será el factor común. El otro factor será simplemente lo que queda del polinomio original, es decir:

La respuesta es:

En algunos casos se debe utilizar el número 1, por ejemplo:

Se puede utilizar como:

Entonces la respuesta es:

Caso II - Factor común por agrupación de términos
Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos. Para resolverlo, se agrupan cada una de las características, y se le aplica el primer caso, es decir:



Un ejemplo numerico puede ser:

entonces puedes agruparlos de la siguiente manera:

Aplicamos el primer caso (Factor común)


Caso III - Trinomio cuadrado perfecto
Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un T.C.P. debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.



Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:

Caso IV - Diferencia de cuadrados
Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo y otro positivo.

O en una forma mas general para exponentes pares:

Y utilizando una productoria podemos definir una factorizacion para cualquier exponente, el resultado nos da r+1 factores.



La factorización de la diferencia o resta de cuadrados consiste en obtener las raíz cuadrada de cada término y representar estas como el producto de binomios conjugados.
Caso V - Trinomio cuadrado perfecto por adición y sustracción
Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante la suma para que sea el doble producto de sus raíces, el valor que se suma es el mismo que se resta para que el ejercicio original no cambie.

Caso VI - Trinomio de la forma x2 + bx + c
Se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio.

martes, 8 de septiembre de 2009

HOLA

hola compañeros